Name of the Course : Mechanical Engineering				
	Advanced Strength of Materia	IS Compostor : Third		
Course c		Semester : Inira Maximum Marka : 100		
Topohing	Schomo	Examination Schome		
Theory	Scheme D brs/week	End Semester Exam: 35 Marks		
Tutorial:	hrs/week	Teacher's Assessment (Assignment & Ouiz): 5 Ma	rke	
Practical		Internal Accessment: 10 Marke	1113	
Crodit: 2		Practical Socianal internal continuous evaluation:	25 Marka	
		Practical Sessional external examination: 25 mark		
Aim '-			5	
SI No				
1	To understand & analyze variou	is types of stresses & strains along with main causes	of failure of	machine
	narts	is types of stresses & strains along with main causes (macinite
2	To study the effect of combined	stress on different machine narts		
3	To understand principles of ma	chine design		
0.	i o understand principies of ma			
Objective	9 :-			
S No	The student will able to			
1	Calculate bending stress and p	repare shear stress distribution diagram at different	cross secti	on in a
	beam			
2	Calculate maximum & minimu	um stresses for different machine elements under	combined	
	bending & direct stress.			
3	Understand & analyze the basic	principles involved in the behavior of machine parts i	ınder load i	n the
-	context of designing it			
4	Calculate strain energy for sprin	g and axially loaded members		
5	Estimate principal stresses and maximum shear stress for a given combined loading by analytical &			
	Mohr's circle method.			
6	Calculate the power transmitte	d by the solid & hollow shafts.		
7	Understand & analyze different	parameters of closed coil helical spring.		
Pre-Requ	iisite:-			
SI. No	Elementary knowledge on engi	neering mechanics		
	, , , , , , , , , , , , , , , , , , , ,	C C		
1.	Differential and integral calculu	S		
2.	Elementary knowledge on stre	ngth of materials		
		Contents	Hrs/week	
Chapter		Name of the Topic	Hours	Marks
01	1.0 Strain Energy			
	11 Concept derivation & us	e of expression for Strain energy of axially		
	loaded members of unifor	m cross section under gradual sudden / impact		
	load (simple problems)	in cross section under gradual, sudden / impact	03	05
	1.2 Strain energy due to self.	weight for uniform cross section member		
	(simple problems)	weight for uniform cross section member		
02	2.0 Bending & Shear stre	esses	06	08
	2.1 Theory of pure bending, e	quation of bending.		
	2.2 Assumptions in the theory	y of bending, moment of resistance, section		
	modulus & neutral axis (s	imple problems on bending stress having		
	rectangular, circular & I se	ection beam)		
	2.3 Shear stresses in beam &	its distribution diagram over various cross		
	section of beam under point l	oad/udl (No problem)		
03	3.0 Combination of Bend	ling & Direct stresses	06	06

	3.1 Determination of maximum & minimum stresses for members under						
	axial load, eccentric load along one principal axis, bending stresses.						
	3.2 Application of the above concepts for machine parts such as offset links,						
	C-clamp, Bench vice, Drilling machine frame, stresses at base of a short						
	column, total stress variation diagrams. (Simple problems on above						
0.4	applications)						
04	4.0 Principal Planes & Principal Stresses	06	06				
	4.1 Definition of principal plane & principal stresses.						
	4.2 Expression for normal and tangential stress, maximum shear stress.						
	4.3 Stresses on inclined planes.						
	4.4 Position of principal planes & planes of maximum shear.						
	4.5 Graphical solution using Mohr's circle of Stresses						
05	5.0 Torsion of solids and hollow circular shafts:	05	05				
	5.1 Concept of Pure Torsion, Torsion equation for solid and hollow						
	circular shafts, Assumptions in theory of pure Torsion.						
	5.2 Comparison between Solid and Hollow Shafts subjected to pure						
	torsion (no problem on composite and non homogeneous shaft)						
06	6.0 Springs:	04	05				
	6.1 Types of spring, uses						
	6.2 Determination of shear stress & its distribution, deflection, stiffness,						
	solid length, concept of mean radius of coil & spring index (simple						
	problem)						
	6.3 Spring in series & parallel.						
	Sub Total:	30	35				
	Internal Assessment Examination & Preparation of Semester Examination	4					
	Total:	34					
Practical							
Skills to b	e developed:						
Intellectua	l skills:						
1. Ca	1. Calculate coefficient of friction for available pair of surface and angle of repose.						
2. Es	2. Establish law of simple machine						
3. Id	entification of different parts of machine and their function.						
4. In	4. Interpretation failure patterns of different metal under different action.						

5. Extrapolating test result or observation during test.

Motor Skills:

- 1. Study and demonstration of Testing Machine & its attachments (if any).
- 2. Sketch of standard specimen, arrangement for test on respective machines.
- 3. Measurement of different parameters.
- 4. Testing different metals and comparison of experimental result.
- 5. Handling Instrument.
- 6. Observing behavior of different metal during test.
- 7. Plotting graph

List of Practical: (sl. No. 1 & 2 compulsory & at least three from the rest)

- 1. To determine coefficient of friction of any pair of surfaces and determination of angle of repose.
- 2. To find MA, VR, Efficiency, Ideal Effort, Effort & Load lost in friction for various loads and establish law of machine and calculate maximum efficiency and Also check the reversibility of a machine (any two) 1) Differential axle and wheel, 2) Weston's differential pulley block, 3) Geared pulley block, 4) Single purchase crab, 5) Double purchase crab, 6) Worm and worm wheel, 7) Two sheave and three sheave pulley block, 8) Screw Jack
- 3. Tension Test on mild steel/ Aluminium & compression test on cast iron on Universal Testing Machine.
- 4. Direct Shear Test of mild steel on Universal Testing Machine.

- 5. Brinell Hardness Test on Mild Steel / Aluminium.
- 6. Rockwell hardness Test on Hardened Steel.
- 7. Izod & Charpy Impact tests of a standard specimen.
- 8. Torsion Test on Mild steel bar.

Assignments:

- 1. Estimation of principal stresses and maximum shear strain for a given combined loading by analytical & Mohr's circle method. (At least two problems.)
- 2. Estimate cross section of machine parts under combined bending and direct stress considering respective mechanical properties.

Note: Total students have to be divided into 10 groups. Each group shall be allotted two different problems on above mentioned areas as home assignment. Problems have to be submitted by each student separately.

List of Books:

Name of Authors	Titles of the I	Book	Edition	I	Name of the Publisher		
R S Khurmi	Strength of Ma	aterials			S.Chand & Co		
S. Ramamurtham	Strength of Ma	aterials			Dhanpat Rai &		
& R Narayanan	U U				Publication		
R.K. Bansal	Strength of Ma	aterials			Laxmi Publication Pvt.		
					Ltd		
Sarkar & Bhandari	Advanced Stro Materials	ength of			Tata McGraw-Hill		
S.S. Rattan	Advance Stre	ngth of Material			Tata McGraw-Hill		
S.S.Bhavikatti	Strength of Ma	aterials			Vikas Publishing House Pvt. Ltd		
R.K. Rajput	Strength of Ma	aterials			S.Chand & Co		
M. Chakraborty	Strength of Ma	aterials			S.K.Kataria		
Bhandari	Design of Mac	chine Elements			McGraw-Hill		
R.S. Khurmi & J. K.	A Text Book of	of Machine			S.Chand & Co		
Gupta	Design						
Gambhir Fundamental of solid mechanics			PHI				
Reference books :-	•						
R. Subramanian	Strength of Ma	aterials			Oxford Press		
S.P. Timoshenko,	Elements of S	trength of			West Press Pvt. Ltd		
D.H. Young	Materials						
D. S. Prakash Rao	Strength of Ma Practical Appr	aterials – A oach			Universities Press		
Egor P Popov	Engineering N Solid	lechanics of			Prentice Hall of India		
Examination Schen	ne for end sem	ester examinati	on:				
Group	Chapter	Marks of each		Question to be set	Question to be		
		question			answered		
A	1,2&3	5		5	At least 2		
В	4, 5 & 6	5	5		At least 2		
From above mentioned groups total 5 questions to be attempted $5*5 = 25$					5*5 = 25		
Α	1,2&3	1		5	5*1 =5		
В	4, 5 & 6	1		5	5*1 =5		
Total: 35							
Examination Scheme for Practical Sessional examination:							
Practical Internal Sessional Continuous Evaluation							
Internal Examinatio	Internal Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer.						
L Five No. of Experime	ents			5*3 =15			

attended & respective lab note submitted in due				
time				
Viva-voce			10	
			Total: 25	
External Examination: Exa	miner- Lecturer	r in Mechanio	cal Engg. / Jr. Lecturer.	
Signed Lab Note E	3ook (for five experiments)		5*2 = 10	
On spot experiment(one fo consisting	r each group g 5 students)		10	
	Viva voce		5	
			Total: 25	

-

Name of the course: Mechanica	al Engg.				
Subject: Fundamentals of Ele	Subject: Fundamentals of Electronics				
Course Code:	Semester: Third				
Duration: 17 weeks	Maximum Marks: 150 Marks				
Teaching Scheme:	Examination Scheme :				
Theory: 3 hours./ week	Internal Examination: 20 Marks				
Tutorial: hour / week	Teacher's Assessment: (Assignment & Quiz): 10 Marks				
Practical: 2 hours/ week	End Semester Examination: 70 Marks				
Credit: 4	Practical: Internal Sessional Continuous Evaluation: 25 Marks				
Rationale: Practical: Internal Sessional Continuous Evaluation: 25 Marks					
In present day mechanical systems application of electric and electronic engineering have larger role to					

In present day mechanical systems, application of electric and electronic engineering have larger role to play. For effective maintenance and operation of these components as well as circuits, mechanical engineers/ technicians must have perfect knowledge of fundamentals of electronics.

Objectives:

The student will be able to-

- 1. Understand the concept of P and N types of semiconductors; know the working of electronic components like semiconductors diodes, rectifiers, filters, regulators & their operation.
- 2. Understand the principle and working of semiconductor switching devices like SCRs, DIAC, TRIAC and optoelectronics devices, their working principles and applications.
- 3. Understand the concept of transistor amplifier, Oscillator, and Op-amp and their applications.

	Content (Name of topic)			
	Group-A			
Unit 1	Semiconductor and Diode	8		
	1.1 Review of P-type and N-type semiconductor, Junction of P-type & N-			
	type i.e. PN junction, Barrier voltage , depletion region ,Junction			
	Capacitance			
	1.2 Forward biased & reversed biased junction, Diode symbol ,circuit			
	diagram for characteristics (forward & reversed), Characteristics of PN			
	junction diode, Specifications:-Forward voltage drop, Reversed			
	saturation current, maximum forward current, power dissipation			
	1.3 Package view of diodes of different power ratings (to be shown during			
	practical nours)			
	1.4 Zener diode: Construction, Symbol, Circuit diagram for characteristics			
	Zener diode specifications – zener voltage power dissipation break			
	over current dynamic resistance & maximum reverse current			
Unit 2	Rectifiers, Filters and Power Supply	8		
	2.1 Need of rectifier, definition, Types of rectifier – Half wave rectifier,			
	Full wave rectifier, (Bridge & centre tapped) Circuit operation			
	2.2 Input/output waveforms for voltage & current, Average (dc) value of			
	current & voltage			
	2.3 (no derivation), Ripple, ripple factor, ripple frequency, PIV of diode			
	used, efficiency of rectifier. (no derivation only definition),			
	Comparison of three types of rectifier			
	2.4 Need of filter, Types of filter and circuit operation (no inductor C) LC filter $D = \pi$ filter			
	mathematical derivation) limitations & advantages			
	25 Voltage regulator. Simple voltage regulator circuit using zener			
	familirisation with IC regulator circuit (like 78XX, 79XX series etc.)			
	IC 723 adjustable power supply, concept of Switch mode power			
	supply (SMPS) block diagram only.			
	Group-B			

Unit 3	Transistors, Switching and Optoelectronics Devices	8	
	3.1 Bipolar Junction Transistor (BJT): Symbol of NPN & PNP types,		
	Construction, Different types of package, Operation of NPN and PNP		
	transistor – current flow, relation between different currents ,Transistor		
	configurations – CB, CE, CC circuit diagram for input & output		
	characteristics of each configuration, Input & output characteristics,		
	Comparison between three configuration, Transistor parameters –		
	input & output resistance and relation between them.		
	3.2 Transistor specification – VCE Sat, IC Max, VCEO, ICEO, VCE		
	Breakdown, Power dissipation.		
	3.3 Field effect Transistor (FET): Symbol, Construction of JFET, Working		
	principle and V-I characteristics of JFET, pinch- off voltage, drain		
	résistance, transconductance, amplification factor and their		
	relationship, Enhancement and depletion type MOSFET.		
	3.4 TRIAC, DIAC, Silicon control rectifier (SCR):-Symbol, working,		
	application (elementary ideas only) Comparison between Transistor		
	and our. 3.5 Elementary ideas of LED LCD photodiade phototransister and solar		
	cell and their applications only		
Unit 4	Transistor Biasing	4	
- Child I	4.1 Need of biasing concept of DC load line and AC load line selection of		
	O point and Stabilization Types of biasing circuits (no mathematical		
	derivation) –a) Fixed biased circuit. b) Collector-to-base biased		
	circuit.c) Voltage divider bias circuit		
	Group-C		
Unit 5	Small Signal Transistor Amplifiers	8	
	5.1 Concept of amplificationSmall signal amplifier using BJT,		
	Determination of current, voltage & power gain, Input & output		
	resistance.		
	5.2 Single stage CE amplifier with voltage divider bias. Its explanation.		
	Frequency response of single stage CE Amplifier, Bel and Decibel		
	unit. Bandwidth & its significance.		
	5.3 Cascade Amplifiers (Multistage Amplifier), Need of Multistage		
	Amplifiers, Gain of amplifier.		
	5.4 Types of amplifier coupling – RC, transformer & direct coupling.		
	5.5 Two stage amplifier circuit diagram, working (briefly), frequency		
	response, merits & demerits & applications of each.		
Unit 6	Oscillator	5	
	6.1 Oscillator – Requirement of oscillator circuit, Barkhauson's criteria of		
	oscillator, circuit diagram and its application only Phase shift		
	oscillator, Hartley oscillator, Colpitts oscillator, Crystal oscillator		
Unit 7	Op-Amp	4	
	7.1 OP-Amp Block diagram and use of op amp as - Inverting, non-		
	inverting, summing amplifier, differentiator, integrator, buffer,		
	comparator, Schmitt's trigger.		
	SUB TOTAL	45	
	Internal Assessment Examination & Preparation of Semester	0	
1			
	Total	51	

Practicals						
Skills to be developed: On satisfactory completion of the course, the students should be in a position to						
design pow	design power supply, amplifier and other analog circuits.					
Intellectua	al Skills:					
1. Interpret	t the results					
2. Verify the	he tables					
	List of Practical: Any SIX(including MINI PROJECT)					
	Suggested List of Laboratory Experiments					
Sl. No.						
1.	To be familiar with the common assembly tools					
2.	To be able to identify and test the following passive and active circuit elements: Resistor,					
	capacitor, inductor, transformer, relay, switches, batteries/cells, diode, transistors, SCR, DIAC					
	TRIAC, LED, LCD, photodiode, phototransistors, Ics etc.					
3.	To be familiar with the following basic instruments: Multimeter, oscilloscope, power supply					
	and function generator.					
4.	To practice soldering, desoldering and construct & test a battery eliminator and simple					
	regulator circuit using Zener and ICs on a Bread Board and Vero Board.					
5.	Input & output characteristics of transistor in CE mode					
6.	To study VI characteristics of FET and MOSFET					
7.	To study VI characteristics of SCR					
8.	To determine frequency response characteristics of RC coupled amplifier circuit and					
	calculation of bandwidth, midband gain, input impedance and output impedance for :					
	a) Single-stage amplifier					
9.	Study simple applications of OP AMP as summer					

EXAMINATION SCHEME: END SEMESTER EXAMINATION

Group	Unit	Obje	Objective questions				Subjective	e Question	
		To be set	To be answered	Marks per question	Total Marks	To be set	To be answered	Marks per Question	Total marks
А	1,2	7				4	Five (at least	10	50
В	3,4	6	20	1	20	3	One from		
С	5,6,7	7				3	Group)		

	Text Books:		
Sl. No.	Name of the Author	Title of the Book	Name of the Publisher
1.	Malvino	Electronic Principles	Tata McGraw-Hill
2.	David A. Bell	Electronic Devices and Circuits	Oxford University Press
3.	Anil K. Maini	Electronics Devices and circuits	Wiley
4.	KK Ghosh	Basic Electronics	Platinum Publisher
5.	BL Theraja	Basic Electronics (Solid state)	S Chand
6.	S. Salivahanan	Electronic Devices and Circuits	Tata McGraw-Hill
7.	VK Mehta, Rohit Mehta	Principles of Electronics	S Chand
8.	Nagrath	Electronics Devices and Circuits	Prentice Hall of India
9.	Millman & Halkias	Electronic Devices and Circuits	Tata McGraw-Hill
10.	Chattopadhyay &	Electronic Fundamentals and	New Age International
	Rakhshit	Applications	
11.	Boylestad & Nashalsky	Electronic Devices and Circuits	Pearson
12.	Samar Chottopadhyay	Analog Electronics - I & II	Naba Prakashani

13.	Maitreyi Ray Kanjilal	Analog Electronics Circuits	JBBL
14.	Ganesh Babu	Linear Integrated Circuits	SCITECH
15.	JB Gupta	Electronics Devices & Circuits	Kataria & Sons
16.	Sanjay Sharma	Electronics Devices & Circuits	Kataria & Sons
17.	Mottershed	Electronic Devices and Circuits	Prentice Hall of India, N.
			Delhi
18.	Bhargava	Basic Electronic & Linear Circuits	Tata McGraw-Hill
19.	Sahadeb	Electronic Principle	Dhanpat Rai & Sons
20.	M.L. Anand	Modern Electronics	S Chand
21.	Dr. T. Thygrajan	Fundamentals of Electrical and	SCITECH
		Electronics Engg	
22.	Premsingh Jakhar	Basic Electronics	Dhanpat Rai Publishing Co
23.	Milman & Halkias	Integrated Electronics	Tata McGraw-Hill

Name of the Co	urse : Diploma in Mechanical Engin	eering		
Subject: Manula		Somester - Third		
Duration : 17 w		Maximum Marks · 200		
Teaching Scher	ne	Examination Scheme		
Theory : 3 hrs/w	eek	Semester Exam: 70 Marks		
Tutorial: hrs/wee	k	Teacher's Assessment (Assignment & Qu	iz): 10 Marks	
Practical : 4 hrs/	week	Internal Assessment: 20 Marks	,	
Credit: 5		Practical Sessional internal continuous ev	aluation: 50 Marks	
		Practical Sessional external examination:	50 marks	
Aim :-				
Sr. No				
1	The development in materials technologies about the requirements activities.	nology, computer technology and economic and demands of manufacturing, are the co	cs, coupled with orner stones of the	
Objective :-				
S No	The student will able to			
1	Know and identify basic manufa	cturing processes for manufacturing differe	nt components.	
2	Operate & control different mach	nines and equipments.		
3	Inspect the job for specified dim	ensions.		
5	Produce jobs as per specified di	mensions.		
5	Select the specific manufacturin	g process for getting the desired type of ou	tput.	
0 Dra Dagraiaitas	Adopt safety practices while wor	king on various machines.		
Pre-Requisite:-				
5r. NO				
1	Depending on the educational back	ground of the student, the previous knowle	edge is examined	
	order to determine if any suppleme	ntary examination in relevant subjects may	be necessary.	
		,	,	
	Contonto		Hrewook	
Chanter	Name of the Topic		Hours	
GROUP:A			110013	
01	INTRODUCTION			
	1 1 Classification of manufacturing	processes: Shaping process, joining	02	
	process & Finishing process			
	F 3F			
	<u> </u>			
02	<u>Porging</u>	Cold Working Examples	04	
	2.2 Forging Processes - Drop for	aina Upset forging. Die forging or press		
	forging i locesses - Drop loig	ging, opset lorging, bie lorging of press		
	2.3 Types of dies - Open Die. Clos	ed Die(Single Impression and Multi-		
	impression) Closed die Forging ope	erations - Fullering, Edging, Bending,		
	Blocking, Finishing			
	2.4 Forgeable material and forgeal	bility, Forging temperature, Grain flow in		
	forged parts, Types of Presses and	I hammers.		
03	Rolling and Extrusion			
	3.1 Principles of rolling and extrusion	on.		

	 3.2 Hot and cold rolling. 3.3 Types of rolling mills: 2 Hi, 3 Hi & 4 Hi mills. 3.4 Different rolled sections. 3.5 Methods of extrusion – Direct, Indirect, backward & impact Extrusion, 	05
	Hot extrusion, Cold extrusion 3.6 Advantages, disadvantages & applications of rolling & extrusion.	
04	 Press working 4.1 Types of presses and Specifications. 4.2 Press working operations - Cutting, bending, drawing, punching, banking, Notching, lancing, piercing, coining, embossing. 4.3 Die set components punch and die shoe, guide pin, bolster plate, stripper, stock guide, knockout. 4.4 Punch and die Clearances for blanking and piercing, effect of clearance . 	05
GROUP:B		1
05	 Lathe 5.1 Cutting tool nomenclature & tool signature of single point cutting tool. 5.2 Orthogonal & oblique cutting, chip formation & type of chips 5.3 Types of lathes – Centre lathe, Capstan & Turret Lathe, CNC Lathe 5.4 Specification of Centre lathe. 5.5 Basic parts and their functions of centre lathe. 5.6 Operations and tools – Centering, facing, Turning, parting off, undercutting, grooving, Knurling, boring, thread cutting. 	06
06	 Drilling 6.1 Classification. 6.2 Basic parts and their functions – Pillar drilling machine & Radial drilling machine. 6.3 Types of operations: drilling, boring, reaming, Counterboring, countersinking, chamfering, Spot facing, Trepanning 6.4 Specifications of drilling machine. 6.5 Types of drills and reamers 	04
07	Milling7.1 Classification., Specifications& applications7.2 Basic parts and their functions – column and knee type, universal milling machine7.3 Types of operations(up milling, down milling)7.4 Types of milling cutters	03
GROUP:C		
08	 Casting 8.1 Patterns - Material used, types, Patterns allowances, Cores, Core allowances. Core prints. 8.2 Moulds - Mould materials, Types of sand, Sand moulding, Pit moulding, machine molding. 8.3 Melting practice. Types of furnaces with specific application Cupola furnace, Electric arc furnace. 8.4 Green sand mould making process 8.5 Special casting processes: die casting, centrifugal casting, investment casting, Shell moulding 8.6 Casting defects & its remidies. 	08
09	Welding 9.1 Classification. 9.2 Gas welding techniques.	
	9.3 Types of welding flames. 9.4 Arc Welding – Principle, Equipment, Applications	08

9.5 Shielded metal arc welding. (Principle & Application)	
9.6 Submerged arc welding. (Principle & Application)	
9.7 TIG / MIG welding. (Principle & Application)	
9.8 Resistance welding. (Principle & Application) - Spot weld	ding, Seam
welding, Projection welding	
9.9 Welding defects.	
9.10 Brazing and soldering: Types, Principles, Applications	
Sub Total:	45
Internal Assessment Examination & Preparation of Sem	ester c
Examination	6
Total	51

Practical:

Skills to be developed:

- Intellectual Skills:
 - 1. Identify basic manufacturing processes.
 - 2. Understand the various method of operations in lathe m/c ,drill m/c & milling m/c
 - 3. Understand the various method of forging
 - 4. Identify joining methods for fabrication

Motor Skills:

- 1. Operate lathes & drilling machines.
- 2. Use welding machines and equipment
- 2 Use smithy/forging equipments
- 3. Set the tools, jobs and decide cutting parameters of machines
- 5. Inspect dimensions of jobs using measuring instruments

LIST OF PRACTICALS, Total 60 Hrs

1] Study of lathe (identify different parts, drives: (cone pulley drive& all gear drive), feed mechanism: (feed reversing mechanism and feed gear box, apron mechanism), work holding devices, tool holding devices, types of tool used in lathe work, study tool angles for a general purpose cutting tool used in lathe, setting of work and tools, operate lathe without work).

2] Practice on making a job involving Lathe operations like Facing, plain turning, Step Turning, grooving, knurling & chamfering; study & use of measuring instrument (batch of 10 students per job)

3] Study of drilling Machine (identify different parts, drive & feed mechanism, types of drill, drill holding device, work holding device, setting work and drill, operate drill machine).

4] Practice on making a job involving drilling operation of different diameter hole at different location, reaming operation at a particular hole, counter sinking operation at one hole. (batch of 05 students per job)

5] Study of different types of welding machines & equipments (Gas Welding set, Electric Arc Welding machine, Electric Resistance Welding machine), hand tools used, safety items used, connection details. Study of different types of welding joints (Lap, Butt, Tee, Corner joint and edge joint) and different positions of welding (flat horizontal, vertical welding and over head welding); Bead practice, edge preparation, Tag welding.

6] Practice on making the welding joint: a) lap joint (material 25mmX6 mm MS flat – 100mm length), b) butt joint material 25mmX6 mm MS flat – 50mm length) c) T – Joint (material 25mmX6 mm MS flat – 50 mm length) d) Corner joint (material 25mmX6 mm MS flat– 50 mm length). (batch of 05 students per job) 7] Study of different types of cold & hot working process (Cold Working: shearing, bending, Hot working: Drawing Down, Upsetting, Punching, and Flattening), Study of tools & machines used in Smithy/Forging Shop. And Practice on different operations in smithy. (Any one from shearing, bending, drawing down, upsetting, punching, flattening).

8] Study & identify different types of hand tool, measuring instrument and machines used in fitting shop,

basic fitting practice like filing, drilling, tapping and making an 'L' shaped job (material: 25 X 6mm MS flat – 50mm length).

NOTE:

- a) SI. No. 1, 3, & 5 are compulsory and submission of respective home assignments (20 Hrs.).
- b) From the rest at least 4 tasks have to be completed (40 Hrs.).

Examination Schedule Internal practical Sessional:

Making job (4 task) & submitting job sheet in	4	4X5 = 20	
scheduled time			
Viva - voce	4	4X2.5 = 10	
Attending classes for studying different machines and submitting respective assignment	3	3X4 = 12	
Viva voce & skill in operating machine		8	
Total:		50	

Examination Schedule: External practical Sessional examination Examiner : Lecturer in Mechanical Engineering & Foreman (Work Shop).						
For Making job (4 task) 4X2.5 = 10						
& submitting signed job						
sheet in scheduled time	sheet in scheduled time					
On spot job		20				
viva voce on study		20				
		50				

End Semester EXAMINATION SCHEME

GROUP	MODULE		OBJECTIVE QUESTIONS			SUBJECTIVE QUESTION			
		TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
A B C	1,2,3,4 5,6,7 8,9	08 06 06	ANY 20	1	20	4 3 3	FIVE (AT LEAST ONE FRO EACH GROUP)	DM 10	50
Name of Authors		Title	Titles of the Book			Edition		Name of the Pu	ıblisher
S. K. Hajra Eleme Chaudary, Bose, Techn Rov		Elements of workshop Technology – Volume I				Media Promote Publishers limit	rs and ed		
S. K. Hajra		Elements of workshop					Media Promote	rs and	
Chaudary, Bose, Roy		Technology – Volume II					Publishers limit	ed	
B.S.Raghuwanshi A Course in Workshop Technology Vol I & II		ogy			Dhanpat Rai &	Со			
D. L. Wakyl Processes and design for manufacturing					Prentice Hall				

KALPAKJIAN & SCHMID	Manufacturing Processes	Pearson Education, New Delhi
Amitabh Ghosh Mallik	Manufacturing Science	East-West Press Pvt. Ltd.
HMT, Banglore	Production Technology	Tata Mc-Graw Hill
O. P. Khanna and Lal	Production Technology - Volume I & II	Dhanpat Rai Publications.
P. N. Rao	Manufacturing Technology Metal Cutting & Machine tools (Volume I & II)	Tata McGraw-Hill
Girling	All about Machine Tools	New age international limited.
Pabla B. S. M. Adithan	CNC machines	New age international limited.
R.B. Gupta	Production Technology	Satya Prakashan New Delhi
W.A.J. Chapman	Workshop Technology - Volume I , II & III	Viva Books (p) Ltd.
Jhon A Schey	Introduction to Manufacturing Processes	McGraw Hills International
M. Aduthan and A. B. Gupta	Manufacturing Technology	New Age International
JT. Black, Ronald A. Kohser	Degarmo's Materials and Processes in Manufacturing 11th Edition	Wiley
M.C. Shaw	Metal Cutting Principle	Oxford
A.B. Chattopadhyay	Machining & Machine Tool	Wiley
M.P. Groover	Fundamentals of Modern Manufacturing	Wiley
Jain & Chitale	Textbook of Production Engineering, 2nd ed.	PHI
DeGarmo's	Materials and Processes in manufacturing	wiley
PN Rao	CAD/CAM Principles & Applications	McGraw Hills
Sareen & Grewal	CAD/CAM theory & Concept	S. Chand
M. Mattson	CNC Programming	Cengage
Reference books :- Ni	 	
Suggested List of Lab	ooratory Experiments :- Nil	
Suggested List of Ass	signments/Tutorial :- Nil	

Name of	the Course : Mechanical Engineering Draw	neering		
Course c	ode: ME	Somester : Third		
Duration	· 17 weeks	Maximum Marke · 150		
Teaching	Scheme	Examination Scheme		
Theory : 3	hrs/week	Semester Exam: 35 Marks		
Tutorial:	hrs/week	Teacher's Assessment (Assignment & Quiz): 5 Mar	ks	
Practical	4 hrs/week	Internal Assessment: 10 Marks		
Credit: 5		Practical Sessional internal continuous evaluation:	50 Marks	
		Practical Sessional external examination: 50 marks		
Aim :-				
SL No				
1.	Understanding of drawing, whic	ch includes clear spatial visualization of objects and the	e proficienc	cy in
	reading and interpreting a wide	variety of production drawings.	•	-
2.	Developing drafting skill to drav	w various component and assembly drawing		
3.				
Objective	9 :-			
S No	The student will able to			
1	Interpret industrial drawings			
2	Interpret instructions related to	manufacturing of components.		
3	Use IS convention of representing	ng various machine components.		
4	Visualize the assembly of a given	n set of details of machine components.		
5	Know the significance & use of t	olerances of size, forms & positions.		
Pre-Requ	lisite:-			
S.No				
1	Sound pictorial ability.			
	A			
		Contents	Hrs/weel	۲
Chapter		Name of the Topic	Hours	Marks
•	Sectional Views	•		
	To draw different (front view, si	ide view and top view) orthographic and sectional	10	
01	views from given Isometric view	vs of casting and machine parts.	10	
	Intersection of solids		10	
02	Curves of intersection of the sur	faces of the solids in the following cases	10	
•_	(a) Prism with prism. Cylinder v	vith cylinder. & Prism with Cylinder		
	When	<i>, , , ,</i>		
	(i) the axes are at 90^0 and i	ntersecting		
	(ii) The axes are at 90° and (Offset		
	(b) Cylinder with Cone			
	When axis of cylinder is parallel to both the reference planes and cone resting on			
	base on HP and with axis interse	ecting and offset from axis of		
	cvlinder			
	Developments of Surfaces		10	
03	Developments of Lateral surface	es of oblique objects (cylinder, cone & pyramids) and		
	their applications such as tray, f	unnel, Chimney, pipe bend, transition piece (square		
	to circular).			
04	1. Standard convention using SP	P - 46 (1988)	04	
	(a) Materials C.I., M.S, Brass, Bro	onze, Aluminum, wood, Glass, Concrete and Rubber		
	(b) Long and short break in pipe	e, rod and shaft.		

	(c) Ball and Roller bearing, pipe joints, cocks, valves, internal / external threads.						
	(d) Various sections- Half, removed, revolved, offset, partial and aligned sections.						
	(e) Knurling, serrated shafts, splined shafts, and chain wheels.						
	(f) Springs with square and flat ends, Gears, sprocket wheel						
	(g) Countersunk & counterbore.						
05	Limits. Fits and Tolerances	07					
	1. Characteristics of surface roughness- Indication of machining symbol	07					
	showing direction of lay, roughness grades, machining allowances,						
	manufacturing methods.						
	2. Introduction to ISO system of tolerencing, dimensional tolerances, elements						
	of interchangeable system, hole & shaft based system, limits, fits &						
	allowances. Selection of fit.						
	3. Geometrical tolerances, tolerances of form and position and its geometric						
	representation.						
	4. General weiging symbols, sectional representation and symbols used in Engineering practices						
06	Details to Assembly	32					
	1. Introduction-						
	2. Couplings – Rigid flanged coupling(for Exam) & Universal couplings						
	3. Bearing – Foot Step Bearing (for Exam)& Plummer block						
	4. Lathe tool Post (for Exam)						
	6. Screw Jack						
	7. C I pulley (for Exam)& stepped cone pulley (for Exam)						
07	Assembly to Details / component Drawing	22					
07	1. Introduction –	32					
	2. Foot Step Bearing(for Exam)						
	3. Lathe Tail Stock						
	4. Drilling Jig (for Exam)						
	5. Piston & connecting rod						
	6. Gland and Stuffing box Assembly						
	7. Valve – Not more than eight parts						
	8. Knuckie joint (lor Exam)& socket & spigot joint (lor Exam)						
	Sub Total: Lecture & Practical Classes	105	25				
		105	30				
	Internal Assessment examination and preparation for semester examination	14					
	Grand Total:	119					
Practical							
Skills to b	be developed:						
Intellectu	ial skills:						
1. Ui 2. In	Iderstand Interpenetration of solid.						
2.10	 Interpret limits, fits and tolerances on a given drawing. Visualize assembly of components from given details 						
3. v	 4. Interpret Conventional symbols as per IS code SP46. 						
5. Id	5. Identify different materials and their properties.						
Motor Sk	ills:						
1. Di	raw front view and top view of solids Penetrating one with other.						

- 2. Conventionally represent limit, fits and tolerances on a given drawing as per the manufacturing processes.
- 3. Give surface roughness values and symbols on a part drawing
- 4. Setting and use of different drawing equipments.

5. Record bill of materials in assembly drawing.

List of Practical: (Use first angle method of projection)

- 1. Intersection of Solids: One sheet (A0 size)
- 2. Development of surfaces: two sheets (A0 size) of different objects.
- 3. Auxiliary views: One sheet (A0 size)containing 4 problems
- 4. Conventional Representation as per SP 46 (1988): as home assignment on Sketch Book
- 5. Limit, Fit, Tolerances and Machining Symbols: as home assignment on Sketch Book
- 6. Assembly to detailed drawings of components including Bill of Materials & conventional representation of tolerances and surface finish symbols: at least five problems on A0 size sheet + balance on Sketch Book as home assignment.
- 7. Details to Assembly including Bill of Materials: at least five problems on A0 size sheet + balance on Sketch Book as home assignment.

Text Books:	Title of the Book	Name of Publishers
N.D.Bhatt	Machine Drawing	Charotar Publication, Anand
N.D.Bhatt	Engineering Drawing	Charotar Publication, Anand
Bureau of Indian	Engineering Drawing Practice for	Bureau of Indian Standards
Standards	School and colleges : IS Code SP 46	
	(1988)	
L.K.Narayanan,	Production Drawing	New Age International
P.Kannaich, K.VenkatRedd	у	Publication
P.S.Gill	Machine Drawing	S.K.Kataria and Sons
Basant Agarwal, C M	Engineering Drawing	Tata McGraw Hill
Agarwal		
Sidheshwar	Machine Drawing	Tata McGraw Hill
	_	
Basudev Bhattacharyya	Machine Drawing	Oxford University Press
Barghese	Engineering Graphics	McGraw Hill
Ajeet Singh	Machine Drawing include Auto CAD	McGraw Hill
K.C. Jhon	A text book of Machine Drawing	PHI
R.K Dhawan	A text book of Machine Drawing	S. Chand
Reference books :- Nil		
Practical Sessional Exa	mination Scheme:	
Practical Internal Sess	ional Continuous Evaluation	/ · · ·
Internal Examination:	Examiner- Lecturer in Mechanical Engg. /	Jr. Lecturer
Submission of 30		
Drawing Sneet &		
Home assignment		
Vive veee		
Total 50		
Dractical External Seco	anal Examination	
Examiner for	onal Examination sturer in Mechanical Engineering / Jr. J	octuror in Mochanical Engineering
External Let		
Sessional		
Examination :		
Submission of 30		
Submission of 30		

signed drawing sheet & home assignment	
Viva voce	20
Total	50

SEMESTER EXAMINATION SCHEME

GROUP	CHAPTER	OBJECTIVE QUESTIONS				SUBJECTIVE QUESTION			
		TO	TO BE	MARKS PER	TOTAL	TO	TO BE ANSWERED	MARKS PER	TOTAL
		BE	ANSWERED	QUESTION	MARKS	BE		QUESTION	MARKS
		SET				SET			
A	1,2,3	03				03	01	10	
В	4,5	05	10	1	10	00			25
С	6,7	02				02	01	15	

Name of	the Course : Mechanical Engineering					
Subject:	Mechanical Engineering Materials	Someotor , Third				
Duration		Semester : Third Maximum Marka : 100				
Topohino	Togehing Schome Examination Schome					
Theory	2 brownook	Internal Accessment: 20 Marks				
Tutorial: k		Topobor's Appagament (Appigament 8	<u>()</u>	Marka		
Dreatical	IIS/WEEK	Find Semanter Every 70 Marke	Quiz). Tu	Marks		
Cradit: 2	. IIIS/week	End Semester Exam. 10 Marks				
AIM :-						
5.NO	To provide students with a specialist advesti	on and training in the area of motals		a huma a wa		
I	and composites for industrial engineering ap	plications from biomedical device manu	facture to	future		
Objective	a -					
S No	The student will able to					
1	know the properties of Engineering Materials	s like Metals, non-metals, ferrous metals	and non-	ferrous		
2	Interpret Iron –Iron Carbide phase equilibriu	m diagram to find temperatures for heat	treatmen	it		
0	processes.	lighting like outting tools dies goors 9	atla a 4			
3	Select the proper materials for different app	lications like cutting tools, dies, gears &	other			
4	Applications.	an ^e ita applicationa far variaua compan	onto to im	provo		
4	ite mochanical proportios	es a its applications for various compon		prove		
5	Inderstand powder metallurgy process and	its applications				
6	Understand Non Destructive testing methods	a & its applications				
Dro-Bogi						
Fie-nequ						
	Contents		Hrs/wee	k		
Chapter	Name of the	е Торіс	Hours	Marks		
GROUP-	A		1			
	Mechanical Engineering Materials and the	eir Properties				
	1.1 Introduction, Classification and Application	on of Engineering materials I.S.				
	specification of materials like plain carbon st	eel, Grey Cast Iron, low alloy steels &				
01	bearing Materials.	Church me Density Melting resist	05	05		
01	1.2 Properties of metals- Physical Properties	5 – Structure, Density, Meiting point.				
	Mechanical Properties -naroness, naroenab	ility, brittleness, fatigue, thermal				
	conductivity, electrical conductivity, thermal (coefficient of linear expansion				
	T.3 Introduction to Corrosion, types of Corros	sion, Corrosion resisting materials				
	2.1 Characteristics and application of formula	motolo				
	2.2 Phase equilibrium diagram for Iron and I	ron Carbide				
	2.3 Flow diagram for production of Iron and	Steel Classification				
	composition and uses of cast iron					
02	2.4 Classification composition and application	on of low carbon steel, medium	10	18		
02	carbon steel and high carbon steel with their	chemical composition. Effect of				
	sulphur silicon and phosphorous on plain ca	arbon steel				
	2.5 Allov Steels: - Low allov steel, high allov	steel, tools steel & stainless steel.				
	Effect of various alloving elements such as -	- Chromium, nickel, manganese,				
	molybdenum, tungsten, vanadium.	· · · · · · · · · · · · · · · · · · ·				
	2.6 Tool Steels (properties & applications): -	High speed Steels (HSS), Hot & cold				
	Working dies, shear, punches.					
	2.7 Magnetic materials: - Properties & Applic	ations of commonly used magnetic				
	materials (Permanent magnets and tempora	ry magnets).				
	2.8 Special Cutting Tool Materials (Propertie	s & Applications): Diamond, Stelites				
	Tungsten Carbide & Ceramics.	•• , , -,				

GROUP-	<u>B</u>				<u> </u>		
	Non Ferrous Meta	Is and Alloys					
	3.1 Properties, app	lications of Copper alloys				10	
03	(naval brass, muntz	z metal, Gun metal & bronze	s), Aluminium alloys (Y-alloy	&	06	12	
	duralumin) & bearir	ead					
	alloys.	tion of booring motorials					
	Heat Treatment of						
	4 1 TTT Diagram	Steels					
	4.2 Introduction to I	Heat treatment processes su	ch as Annealing, subcritical				
04	annealing, Normali	zing, Hardening, Tempering	(Austempering &		8	15	
	Martempering) - Pr	inciple, Advantages, limitatio	ns and applications.				
	4.3 Surface Harder	ning - Methods of surface ha	rdening, i) case hardening ii)				
	Flame Hardening, i	ii) Induction Hardening, iv) N	litriding, v) Carburizing				
	Principle, advantag	es, limitations and applicatio	ns.				
GROUP-	U Non Motallic Mate	riale					
	5 1 Polymeric Mate	rials – Introduction to Polym	ers-types characteristics				
	properties and uses	s of Thermoplastics. Thermo	setting Plastics & Rubbers.				
	5.2 Thermoplastic I	Plastics – Uses of ABS, Acry	lics, Nylons and Vinyls.				
	5.3 Thermosetting	Plastics – Characteristics an	d uses of polyesters, Epoxies	3,			
	Melamines & Bake	lites.					
	5.4 Rubbers – Neo	prene, Butadiene, Buna & Si	licons - Properties & applica	tions.	08	10	
05	5.5 Properties and	applications of following Eng	ineering Materials – Ceramic	;S,			
	Abrasive, Adnesive	and insulating materials suc	ch as Cork, Asbestos, Therm	ocole			
	5.6 Introduction to (
	Fiber reinforced ma						
	Powder Metallurg	y					
	6.1 Advantages, limitations and applications of Powder Metallurgy for engineering						
	products.						
	6.2 Brief Descriptio	n of Process of Powder Meta	allurgy – Powder making, ble	nding,	04	05	
06	compacting, sinteri	ng, inflitration & impregnation	1. tan aarhida tin taala 8 norous				
00	bearing	Fowder metallurgy for turigs	ten carbide lip tools & porous	>			
	bearing.						
	Nondestructive Te	esting					
		C					
07	7.1 Importance of N	Non-destructive testing, Diffe	rence between Destructive a	nd	04	05	
	Nondestructive test	ting.					
	7.2 Nondestructive	testing methods – Radiogra	phy (X-Ray & Gamma Ray),	. 0			
	Oltrasonic crack de	lection, Dye penetrant test, i	viagnanux test – Companson	ă.			
	Sub Total				45	70	
		ont Examination & Dronara	tion of Somostor Examinat	ion	45	70	
						_	
	Total:				51		
Text Boo	ks						
Name of	Name of AuthorsTitles of the BookEditionName				of the F	ublisher	
O R Khanna A Taut Back of Material Dhave					oot Doi a	nd Sona	
U.F.Mar	IIIa	Science and Metallurov		[1000	Jai mai a 1	uiu 30115	
DrVDK	Dr V D. Kodaire Material Science and Everes				ı st Public	hina	
		Metallurgy		House	3		
B.K.Baiput		Material Science and		S.K.K	atari and	Sons	

	Engineering						
S.K.Hazra and	Material Science and	Indian Book					
Choudhari	Processes	Distribution Co).				
Kenneth G.	Engineering Materials	Pearson Educa	ation,				
Budinski and	Properties and Selection	New Delhi					
Micheal K.							
Budinski							
ASME	ASME Material Manuals	ASME					
Sidney H. Avner	Introduction to Physical	Tata Mc Graw	Hill				
	metallurgy	edition					
P. C. Sharma	A Text Book of Production Technology.	S. Chand & Co).				
Khan & Haq	Manufacturing Science	PHI					
Rajan Sharma & Sharma	Heat Treatment	PHI					
Rghavan	Material Science & Engineering	PHI					
Avner	Engineering Materials (Physical Metallurgy)	Mc Graw Hill					
V. Rajendran	Material Science	Mc Graw Hill					
Smith	Material Science & Engineering	Mc Graw Hill					
Reference books :- Nil							
Suggested List of Laborator	Suggested List of Laboratory Experiments :- Nil						
Suggested List of Assignments/Tutorial :-							
1. Flow diagram of steel making processes.							
2. Flow diagram of production of pig iron.							
3. Iron & iron carbide equilibrium diagram							
4. T T T diagram							

EXAMINATION SCHEME

GROUP	CHAPTER	OBJECTIVE QUESTIONS			SUBJECTIVE QUESTION				
		TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
А	1,2	06				3	FIVE		
В	3,4	06	20	1	20	3	(AT LEAST ONE FROM	10	50
С	5,6,7	8				4	EACH GROUP)		

Name of the Course : Mechanical Engineering								
Subject:	ject: THERMAL ENGINEERING - I							
Course o	code: ME	4	Semester : Third					
Duration	n : 17 wee	eks	Maximum Marks : 150					
Teaching	g Scheme	;	Examination Scheme					
Theory :	3 hrs/w	eek	Internal Assessment: 20 Marks					
Tutorial:	hrs/w	reek	Teacher's Assessment (Assignment &	Quiz): 1	0 Marks			
Practical	: 2 hrs/w	veek	End Semester Exam: 70 Marks					
Credit: 4			Practical: Internal Sessional continuou	s evaluatio	on: 25 Marks			
			Practical: External Sessional examinat	ion: 25 ma	arks			
Aim :-								
S. No.								
1	To stud	v of various sources of energy	7.					
2	To und	erstand the concept of energy.	work, heat & their conversion.					
3	To und	erstand the concept of thermo	dynamics and study of various thermod	lynamic la	ws with their			
	applica	tions.		· j				
4	To stud	v the properties of gas & prop	perties of steam and their application in d	ifferent th	ermodynamic			
	system							
5	To study the basics of Heat transfer and its application							
Objectiv	iective :-							
S. No.	The Students should be able to:							
1.	•	Know various sources of energy & their applications						
2.	•	 Apply fundamental concepts of thermodynamics to thermodynamic systems 						
3.	•	Understand various laws of the	ermodynamics.					
4.	•	Apply various gas laws & idea	al gas processes to various thermodynam	ic system	3.			
5	•	Understand the properties of s	team and should be able to solve simple	numerical	of two phase			
		system by using steam table /	Mollier chart.		or the prime			
6.	•	Understand the basics of Heat	transfer and its application.					
Pre-Rea	uisite: El	ementary knowledge on Physic	cs and basic Mathematics					
		<u> </u>			/ 1			
		Contents		Hi	's/week			
THERM	IAL ENG	INEERING- I						
Cha	pter	Nam	ne of the Topic	Hours	Marks			
	1.0		GROUP-A	0.6				
1	1.0	SOURCES OF ENERGY		06				
	1 1							
	1.1	Brief description of energy se	ources, including					
		Classification of ener	gy sources.					
		Renewable and Non-	Renewable sources of energy.					
		Conventional and No	n-Conventional sources of energy.					
	1.2	Brief description on availabl	le form of energy, conversion to useful					
		form and its application.						
	1.2.1	Fossil fuels, including CNG,	LPG.					
	1.2.2	2.2 Solar energy, including						

		Flat plate and concentrating collectors.		
		Solar Water Heater.		
	1.2.3	Photovoltaic Cell, Solar Distillation.		
	1.2.4	Wind energy, Tidal energy, Geothermal energy.		
	125	Biomass energy including Biogas Bio-diesel		
	126	Hydroelectric energy Nuclear energy		
	1.2.0	Fuel cell		
2	2.0	FUNDAMENTALS OF THEPMODVNAMICS	10	
2	2.0	Fundamental concents of the following:	10	
	2.1 2.11	Pure substance		
	2.1.1	System Boundary Surrounding		
	2.1.2	Classification of system including open system closed system isolated		
	2.1.5	system		
	214	Properties of system including Intrinsic and Extrinsic properties with		
	2.1.1	units and its conversion like Pressure (Atmospheric Pressure, Gauge		
		Pressure and Absolute pressure). Volume. Sp-mass and Temperature.		
	2.1.5	State of a system, change of state. Path. Process.		
	2.1.6	Equilibrium of a system, including Mechanical, Thermal, Chemical and		
		Thermodynamic equilibrium.		
	2.1.7	Cycle, including Thermodynamic cycle and Mechanical cycle.		
	2.1.8	S.T.P and N.T.P.		
	2.2	Energy:		
	2.2.1	Definition and units of Transient energy (Work and Heat), Stored energy		
		(P.E., K.E and Internal energy), Point Function & Path Function.		
	2.2.2	Displacement work & Flow work.		
	2.2.3	Definition & units of Power.		
	2.2.4	Definition and units of Enthalpy.		
	2.2.5	Definition of Specific heat, Specific heat at constant pressure (Cp),		
		Specific heat at constant volume (Cv) and Adiabatic Index (Cp/Cv).		
	2.3	Laws of Thermodynamics and their Application:		
	2.3.1	Zeroth Law of Thermodynamics and Temperature measurement.		
	2.3.2	Principle of Energy Conservation.		
	2.3.3	First law of Inermodynamics, Simple Energy Equation for non-flow		
		process $(Q - w) = \Delta E$, steady Flow Energy Equation and its application to system like boiler, nozzla, turbina, compressor by condensar (Simple		
		numerical) Concept of Perpetual Motion Machine of 1 st kind limitations		
		of First law of Thermodynamics		
	234	Second I aw of Thermodynamics: Kelvin – Plank Statement & Clausius'		
	2.3.4	Statement Heat Engine Heat Pump and Refrigerator Thermal		
		Efficiency, C.O.P., Concept of Perpetual Motion Machine of 2 nd kind.		
		definition and units of Entropy.		
		······································		
3	3.0	PROPERTIES OF GASES	10	
	3.1	Definition and comparison of Ideal Gas & Real Gas.		
	3.2	Charle's Law, Boyle's Law and Avogadro's Law, Equation of State		
		(PV=mRT), Characteristic Gas Constant and Universal Gas Constant.		
	3.3	Relation among two Specific Heats (Cp & Cv) with Characteristic Gas		
		Constant.		
	3.5	Ideal gas processes: Governing equation of processes (Pressure &		

		Volume relations), Representation of the processes on P-V and T-S diagram, Deduce the expression to calculate Work transfer, Heat Transfer, Change of I.E., change of enthalpy and Change of Entropy for the following Processes: Constant Pressure Process, Constant volume Process, Constant temperature Process, Adiabatic Process & Polytropic Process (Simple numerical on Processes).		
4	4.0	GROUP-D PROPERTIES OF STEAM	10	
-	4.1 4.2	Explanation of steam generation process with the help of P-V & T-S diagram. Basic terms & properties of steam: Saturation Temperature, Saturation Pressure, Saturated liquid, Dry Saturated Steam, Wet Saturated Steam, Saturated steam, Superheated Steam, Critical Temperature, Dryness Fraction, Degree of Superheat, Sensible Heat, Enthalpy of Evaporation or		
	13	Latent Heat of Evaporation, Enthalpy of Steam, Specific Volume, Entropy of Steam. (Simple numerical) Steam Table & its use, Enthalpy- Entropy diagram of steam (Mollier Chart) and its use. Measurement of dryness fraction: Throttling process. Steam Calorimeters		
	4.4	Types and Principle for calculation of Dryness Fraction of Steam using a) Throttling Calorimeter, & b) Combined Separating & Throttling Calorimeter (Simple numerical). Comparison of Gas & Vapour		
	4.5	Vapour Processes: Constant Pressure, Constant Volume, Constant Entropy & Constant Temperature processes and representation of the processes on P-V, T-S & H-S diagram,(Simple numerical using Steam Table and Mollier Chart)		
5	5.0	BASIC OF HEAT TRANSFER	09	
	5.1 5.2	Explanation of Three Basic Modes of Heat Transfer (Conduction, Convection and Radiation). Fourier's Law of heat conduction, Thermal Conductivity and concept of Thermal Resistance.		
	5.2.1	Heat Transfer through Plane Homogeneous Wall, Heat Transfer through Composite Wall, Heat Transfer through Hollow Cylinder and Heat Transfer through combined Conduction and Convection (Simple numerical).		
	5.3 5.3.1	Steran-Boltzmann Law of heat radiation with explanation of terms with unit. (No numerical) Definition and inter relation of Absorptivity, Reflectivity and		
	5.3.2 5.4	Transmissivity Concept of Black and Gray Bodies. Principle of heat exchanger, Construction, working principle and application of Shell and Tube, Plate Type, Multiphase Heat Exchangers. (No deduction and numerical)		

		Sub Tota	1:	45
Internal Assessm	ent Examination & Preparation of Se	mester Examinatio	n	6
		Tota	al	51
Practical:				
Skills to be developed:				
Intellectual Skill :				
1. Understand different	sources of energy and their applications.			
2. Understand various of	concepts and fundamentals of thermodynam	nics.		
3. Understand concepts	and laws of ideal gasses.			
4. Interpret steam table	s, mollier chart and relationship between di	fferent thermodynamic	e prop	erties.
5. Understand modes o	f heat transfer and concept of heat exchange	es.		
Motor Skills :				
1. Conduct trial on sola	ir water heating system.		. •	
2. Study of schematic I	ayout of Wind Power Generation Plant / Bio	ogas Plant / Hydroelec	tric Po	ower Plant.
3. Conduct trial on Bor	no Calorimeter for calculating the calorific	value of coal.	antiam	of stoom
4. Conduct trial on Dry 5. Conduct trial on the	setup for coloulation of thermal conductivity	v of metal rod	action	of steam.
J. Conduct that on the	setup for calculation of thermal conductivity	y of metal fou.		
1 Study of Solar Water	r Heating System			
2. Study of schematic 1	avout of Wind Power Generation Plant / B	liogas Plant / Hydroele	ctric I	Power Plant.
3. Study & measurement	nt of calorific value of solid fuel using Bom	b Calorimeter.		
4. Study of Pressure Ga	auge and its use.			
5. Calculation of Chara	cteristic Gas Constant of air based on some	practical data.		
6. Study and Measurem	nent of Dryness Fraction of Steam by Dryne	ess Fraction Measuring	Instru	ument.
7. Determination of the	ermal conductivity of a solid metallic rod.			
8. Verification of Stefa	n-Boltzmann's law.			
9. Study and compare v	various Heat Exchangers such as Radiators,	Condensers, Evaporat	ors (S	hell and Tube Heat
Exchanger) & Plate	Type Heat Exchangers.			
Note: At least $FIVE(05)$ no.	of Practical/Study are to be conducted.			
Text Books				
Name of Authors	Titles of the Book	Edition	Na	me of the Publisher
Traine of Trainors	Thes of the Book	Lattion	1 14	the of the rubilisher
Domkundwar V. M.	A Course in Thermal Engineering.		Dhani	pat Rai & Co.
Dr. D.S.Kumar	Engineering Thermodynamics		S.K. K	ataria & Sons
	(Principles & Practices)		_	-
P. L. Ballaney	A Course in Thermal Engineering.		Khanı	na Publishers
R. S. Khurmi	A text book of Thermal Engineering.		S. Cha	nd & co. Ltd.
R. K. Rajput	A Course in Thermal Engineering.		Laxmi	i Publication, Delhi
Patel and Karmchandani	Heat Engine Vol I & II		Achar	ya Publication
P. K. Nag	Engineering Thermodynamics		Tata N	AcGraw Hill
B. K. Sarkar	Thermal Engineering		Tata N	AcGraw Hill
A.R. Basu	Thermal Engineering (Heat Power)		Dhanı	pat Rai & Co.
R.K. Rajput	Non Conventional Energy Sources		S.Cha	and & Company
	and Utilisation		Ltd., 2	2012.
			-	
G.D. Rai	Non Conventional Energy Sources -		Khan	na Publishers,
			New I	Delhi,1999.
B.H.Khan	Non-Conventional Energy		Tata I	Mc Graw Hill, 2nd

	Resources		Edn, 2009			
Reference books :- Nil						
Suggested List of Laborat	ory Experiments :- Nil					
Suggested List of Assignm	ents/Tutorial :-					
1. Prepare a chart sh	owing different sources of energy and the	ir applications.				
2. Draw P-V, T-S & saturated steam zo	2. Draw P-V, T-S & H-S plane of steam and display saturated liquid line, dry saturated vapour line, wet saturated steam zone, critical point, triple point, superheated zone& under cooled liquid zone.					
3. Draw P-V, T-S, H-S & P-T plane of steam and show constant pressure, constant temperature, constant volume & constant entropy line.						

EXAMINATION SCHEME: END SEMESTER EXAMINATION

GROUP	MODULE		OBJECTIVE QUESTIONS			SUBJECTIVE QUESTION			
	OR	TO	TO BE	MARKS PER	TOTAL	TO	TO BE ANSWERED	MARKS	TOTAL
		BE	ANSWERED	QUESTION	MARKS	BE		PER	
CHAPTER		SET				SET		QUESTION	MARKS
^	4.0.0	40				<u> </u>			
A	1,2,3	12				0	FIVE, (AT LEAST		
			ANY 20	1	20		TWO FROM EACH	10	50
В	4,5	8				4	GROUP)		
							,		

EXAMINATION SCHEME FOR PRACTICAL SESSIONAL

Internal Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer					
Five No. of Experiments / Study attended & respective lab note submitted in due time	5*3 = 15				
VIVA VOCE	10				
TOTAL	25				

EXTERNAL Examination: Examiner- Lecturer in Mechanical Engg. / Jr. Lecturer					
Submission of Signed Lab Note Book (for five experiments/study)	5*2 = 10				

On spot experiment (one for each group consisting 15 students / explanation of study item)	10	
VIVA VOCE	5	
TOTAL	25	

Name of the Course : Mechanical Engineering					
Subject: Professional Practices-I					
Course code:		Semester : Third			
Duration : 17 weeks		Maximum Marks : 50			
Teaching Scheme		Examination Scheme			
Theory : hrs/week		Practical: Internal Sessional Continuous Evaluation: 25 Marks			
Tutorial: hrs/week		Practical: External Sessional Examination: 25 marks			
Practical : 2 hrs/week					
Credit: 1					
Aim :-					
S.No					
1	To develop general confi technological concepts the topics and group discussion	dence, ability to communicate and attitude, in addition to basic nrough Industrial visits, expert lectures, seminars on technical on.			
Objective :-					
SI. No.	The student will able to:				
1	Acquire informatic	on from different sources.			
2	Prepare notes for	given topic.			
3	Present given topi	c in a seminar.			
4	Interact with peers	s to share thoughts.			
5	Prepare a report on industrial visit, expert lecture.				
Pre-Requisite:-Nil	· · · · ·				

·				
	Hrs/week			
Chapter	Name of the Topic			
01	 Industrial Visits: Structured industrial visits be arranged and report of the same should be submitted by the individual student, to form a part of the term work. ONE industrial visits may be arranged in the following areas / industries : Manufacturing organizations for observing various manufacturing processes including heat treatment. Material testing laboratories in industries or reputed organizations. Auto workshop / Garage. Plastic material processing unit. 	5 hours		
02	 Individual Assignments: Individual student should submit a report of the same, to form a part of the term work. Any two from the list suggested Process sequence of any two machine components. Write material specifications for any two composite jobs. Collection of samples of different plastic material or cutting tools with properties, specifications and applications. Preparing models using development of surfaces. Select different materials with specifications for at least 10 different machine components and list the important material properties desirable. Select 5 different carbon steels and alloy steels used in mechanical engineering applications and specify heat treatment processes amployed for improving the properties. 	5 hours		

	 List the various properties and applications of following materials a) Ceramics b) fiber reinforcement plastics c) thermo plastic plastics d) thermo setting plastics e) rubbers. 	
	Computer Aided Mechanical Engineering Drawing using CADD software:	20 hours
03	Basic screen components – Starting a drawing: Open drawings, Create drawings– Co-ordinate systems: Absolute co-ordinate system, Relative co-ordinate system – Direct distance method – Saving a drawing:	
	Opening an existing file – Concept of Object – Object selection methods: Pick by box, Window selection, Crossing Selection, All, Fence, Last, Previous, Add, Remove – Erasing objects: OOPS command, UNDO / REDO commands – ZOOM command – PAN command, Panning in real time – Setting units – Object snap. DRAW COMMANDS	
	Drawing of LINE, CIRCLE, ARC RECTANGLE, ELLIPSE, POLYGON, POLYLINE, DONUT, MULTILINE EDITING COMMANDS	
	MOVE ,COPY , OFFSET , ROTATE , SCALE , STRETCH , LENGTHEN ,TRIM , EXTEND , BREAK , CHAMFER , FILLET , ARRAY , MIRROR ,MEASURE , DIVIDE , EXPLODE , MATCHPROP , Editing with grips: PEDIT.	
	DRAWING AIDS	
	Layers – Layer Properties Manager dialog box – Object Properties LTSCALE Factor, Auto Tracking, REDRAW, REGEN.	
	CREATING TEXT	
	Creating single line text – Drawing special characters – Creating multiline text – Editing text – Text style	
	BASIC DIMENSIONING	
	Fundamental dimensioning terms: Dimension lines, dimension text, arrowheads, extension lines, leaders, centre marks and centrelines, alternate units – Associative dimensions – Dimensioning methods – Drawing leader, Editing dimensions by stretching – Editing dimensions by trimming & extending – Editing dimensions, Editing dimension text: , Updating dimensions ,Creating and restoring Dimension styles.	
	Натснінд	
	Basics of HATCHING – Boundary Hatch Options: Quick tab, Advance tab – Hatching around Text, Traces, Attributes, Shapes and Solids – Editing Hatch Boundary.	
	PLOTTING OF DRAWINGS	
	Plot Configuration – Pen Assignments – Paper Size & Orientation Area – Plot Rotation & Origin – Plotting Area – Scale	
	PRACTICE WITH COMPLETE DRAWING	
	Each student is required to prepare a set of 2D drawing (handle, Hooke, wrench, gasket, orthographic projections of 1 st , 2 nd & 3 rd Semester drawing) to practice above CADD commands and any other drawings approved by the teacher-in-charge. Any two assembly drawing of the following : 11 Cotter Joint.	
	2] Knuckle Joint3] Screw Jack.4] Foot step bearing.	

	5] Universal 6] Flange Co 7] Tail stock 8] Piston of S	Coupling upling SI engine.				
	Total				30 hours	
Text Books			L			
Name of Authors		Titles of the Book	Edition	Nam Publ	e of the isher	
Robert M. Thomas		Advanced AutoCAD		Sybe	ex BPD	
R Cheryl		Beginning AutoCAD 2011- Exercise Book (W/2 DVDs)		BPB	Publication	
D Raker & H.Rice		Inside Autocad		BPB	Publication	
George Omura		Mastering Autocad 2010 & Autocad LT 2010		BPB	Publication	
David Frey		AutoCAD 2013 and AutoCAD LT 2013: No Experience Required				
Sham Tickoo		AutoCAD 2013 for Engineers & Designers		Wile	у	
OnSoft		AutoCAD 2013 & AutoCAD LT 2013		Wile	у	
Reference books :- Nil						
Suggested List of Laboratory Experiments :- Nil						
Suggested List of Assignments/Tutorial :- Nil						

Examination Scheme:			
Internal Practical Sessional Examination			
Торіс	Marks		
1 - Submission of project report on industrial visit on scheduled date.	5		
2 - Submission of two reports on individual assignments on scheduled date.	5		
3 - Practice of CADD software.	10		
4 - Viva – voce.	5		
Total:	25		
External Practical Sessional Examination			
Торіс	Marks		
1 - Submission of signed report & assignment.	5		
2 - On spot CAD Drawing.	15		
3 - Viva voce.	5		
Total:	25		